

Excellence in Teaching Portfolio

Submitted for the 2025 Excellence in Teaching Award

Alexander Tepper
PhD Candidate
Department of Mathematics
alexander.tepper@uga.edu

Table of Contents

Letter of Nomination	3 - 4
Personal Statement	5
Teaching Portfolio	6 - 17
Teaching Philosophy	6 - 7
Description of courses taught	7 - 9
Sample teaching materials	9 - 11
Sample of student work	11 - 12
Explanation of innovative teaching projects and roles	13 - 14
List of professional activities related to teaching at UGA	14 - 15
List of teaching-related professional development and training experiences	15
Evaluation of your teaching (from students, peers, faculty)	16 - 17

Department of Mathematics

Franklin College of Arts and Sciences
UNIVERSITY OF GEORGIA

January 17, 2025

To whom it may concern,

I am pleased to nominate UGA Mathematics PhD student Alexander Tepper for the 2025 Excellence in Teaching Award. Alex is quite simply a fantastic teacher inside and outside the classroom who merges his passion for mathematics at all levels, including his deep passion for high-level research mathematics, with incredible compassion and understanding for his “students”. I put “students” in quotation marks because his impact as an educator is felt far beyond the conventional classroom-based teacher/student scenario. In the conventional classroom environment he is a masterful teacher and much loved by his students, but at the same time he has been a leader in our department in terms of breaking down the boundaries of the classroom. The most striking example of this has been his recent work over multiple semesters spearheading a unique collaboration that culminated in our recent exhibition in the Shirley McBay Science Library titled “Spacing Out: Art and Topology”, with an opening attended by deans, vice-provosts, elementary school students, undergraduates of all majors, mathematicians, artists, and community members with no academic connections whatsoever. This incredible event would never have come to fruition without Alex’s tireless and inspirational guidance.

I am the graduate coordinator in the math department and the chair of the graduate committee; the decision to nominate Alex for this award was made unanimously by the whole graduate committee, which represents our department faculty on issues relating to graduate students. Thus I speak for our entire faculty in this nomination. In particular, I solicited comments from other faculty to help me write this letter, some of whom have interacted extensively with Alex in classroom teaching. My personal interaction with Alex as an educator has been focused especially on the above-mentioned art and topology exhibition, so I will discuss that in some detail after first highlighting some of my colleagues’ comments about Alex’s teaching.

One colleague describes long walks with Alex discussing pedagogy, saying that “during these talks, the level of thought and care displayed by Alex toward his students was simply astounding. Alex held office hours for interested students immediately before his lectures and patiently waited afterward to answer any questions raised by his latest offering. With his dedication to rigor and expertise in visualizations, I was able to observe students work through a myriad of topics that normally present hurdles for many others. It is my undoubted belief that students from Alex’s section were better prepared and more engaged with the same material and future studies than others in similar sections.” Another colleague mentions how their students raved about Alex as a teacher after he substituted a few times in their classroom. When Alex was the assigned grader for a foundational course in geometry (which is a required course for math education majors), the instructor of that course commented that “In a section of just ten students, my aim was to engage

students in a field of their interest while connecting to the course content. With Alex's help, we held one-on-one student meetings to discuss potential topics of exploration. In these meetings, Alex leaned on his knowledge and past experiences - both academic and industrial – to guide students toward topics like the geometry of flamenco dresses or the study of ruled surfaces created during a student's flagline routine. His help throughout the semester led to end-of-year student presentations that went well beyond the course curriculum and engaged the students in a learning experience that went beyond the semester.” Personally, I have received completely unsolicited rave reviews of Alex from several undergraduates in his classes, describing their experiences in his classes as transformative.

Alex returned to the PhD program in Spring of 2023 after some time spent doing graphics programming for Microsoft. Recognizing his unique skills in visual communication of mathematical ideas, I was able to find funding for him to work as a teaching assistant coordinating a group of undergraduate students from mathematics (and mathematics-related majors) and art (especially graphic design) to collaborate to create a collection of objects with the loose vision of a “Pop-Up Museum of Topology”. Alex was able to recruit students and facilitate a truly transformative collaboration that just kept building momentum, meeting regularly at the UGA Arts Collaborative space. In fact, we showcased preliminary outcomes from this collaboration in our proposal to the NSF for a large Research and Training in Groups workforce grant. I am certain that the high quality of Alex's work, its interdisciplinary nature, and its unique pedagogical approach, was a major contributing factor to the fact that our proposal was funded. This \$2.5 million five-year grant supports geometry and topology research and training, with a central training component being the new Geometry Research, Outreach and Visualization Initiative (GROVI), largely modelled on Alex's prototype. The final outcome of Alex's project, the science library exhibition, also served as the GROVI kickoff event. This represented a unique collaboration between art and mathematics, and was the result of a true “experiential learning” process in which a masterful educator (Alex) led a group of undergraduates to learn things about problem solving techniques, communication skills and mathematical sophistication that they would never have had the chance to learn in any standard university course.

Please consider Alex's nomination for this award very seriously, I cannot think of a more deserving candidate, and I have seen some incredible teachers in my time. I am confident that he has a promising and impactful career ahead of him in mathematics research, education and outreach, reminding us all how much these three sides of the academic mission are deeply intertwined and how much they support each other. I know that wherever he goes after completing his PhD at UGA, he will continue his efforts to spread the joy of mathematics to people from all walks of life.

Sincerely,

A handwritten signature in black ink, appearing to read "D. Gay".

David Gay
Professor and Graduate Coordinator
Department of Mathematics
University of Georgia

Personal Statement

Enclosed you will find my application to the 2025 Excellence in Teaching Award, which serves to evidence consistent dedication to high-level instruction and the impact of innovative and effective interdisciplinary outreach. As a 6th year PhD candidate in the Department of Mathematics, I appreciate the opportunity to share with you the unique perspective and values of nurturing mathematical reasoning and curiosity behind my teaching practice. Since 2019, I have taught 7 Precalculus classes and 4 Calculus I classes, and served as graduate assistant for 5 upper-division courses with varying levels of responsibility in curriculum development and grading.

My passion for math education, supported by years of experience prior to UGA as a high school teacher, home school instructor, tutor, and guest lecturer, is oriented toward disarming students entrenched with math phobias and revealing myriad paths toward problem solving that empower the student to experiment. I am proud of this approach resulting in an environment of inclusivity, openness, and exploration that my course evaluations reflect. I have extended these efforts beyond the traditional classroom expectations through interdisciplinary outreach, enhancing curriculum and test development, and professional development suited for both conventional and unconventional classroom formats.

Mathematics outreach serves to engage our community with interesting, useful, and beautiful mathematical content, to broaden access to esoteric material, and to bridge academic divisions. To this end, I have dedicated 3 semesters to serving as lead organizer of [“Spacing Out: Art and Topology Pop-up Museum,”](#) an NSF-funded math exhibition featuring works developed by UGA undergraduates from a diverse range of majors. This experiential learning project involved familiarizing the participants with topology (a type of abstract geometry), as well as the core tenets of scientific communication and considerations arising from museum studies. My industry experience in technical art and computer graphics research translated into a computer graphics workshop for participants. This exhibition was displayed for the month of November 2024 in the lobby of the Shirley McBay Science Library for the 2024 UGA Spotlight on the Arts Festival (with a smaller display on extended view through February 2025), and attracted the interest of hosts of students, faculty, and administrators alike.

I have also led curriculum and test development for the math department beyond my teaching duties. This past fall, I was invited to serve as a test group coordinator for Precalculus, and wrote exams for 4 other classes alongside my own, which is an assignment usually fulfilled by a full-time instructor. In Spring 2024, I co-developed a new Foundations of Geometry course curriculum conveying advanced math to math education majors. During the pandemic lockdown, I was afforded the opportunity to teach an online asynchronous version of Calculus ordinarily taught by faculty due to a record of positive classroom observations.

Since enrolling at UGA, I have prioritized professional development as both a researcher and as an instructor. I've taken three classes on the theory and implementation of flipped class structures in undergraduate math courses. I have experience with and have implemented a traditional lecture format, a flipped classroom structure, as well as more flexible active learning models. I've served as a consultant for a doctoral math education research project, described below.

I am honored to be considered for this prestigious university award and appreciate the committee's consideration in reviewing my materials.

Teaching Philosophy

At the center of my development as a student, researcher, and educator is the simple yet deeply gratifying joy of learning and discovery, and the expanded vision of the world these experiences lead to. This type of learning experience, so crucial to the broader education of our students, is genuinely challenging to foster in others.

My teaching philosophy embraces active learning that centers demystification, joyful learning and play (or embracing the social nature of learning), accessibility and belonging, and student empowerment.

A big part of learning precalculus and calculus is developing mathematical fluency. I always begin the semester by recalling the experience of enjoying reading children's books without any pragmatic outcome or expectation, emphasizing that this joyful reading was instrumental in developing one's general literacy. In the same way, the process of engaging with mathematical problem solving skills and language can lead to lifelong improvements in critical thinking and quantitative reasoning that extend far beyond the particular applications examined in the class, so that even students that will never solve a quadratic equation again for the rest of their lives will benefit and see the world with a deeper vision.

Mathematical notation can be an affront to the reader. Even seasoned mathematicians have to read papers slowly and carefully. It is simply the nature of the beast — it is difficult. Rather than confront the student with a wall of notation, I introduce and demystify the material with a philosophy of *exposure followed by experience followed by abstraction*.

Before a Precalculus or Calculus I class, students engage material at home through short pre-recorded video lessons with guided problem solutions developed by the course coordinators in the math department, and are asked to submit solutions to pre-class problems (*exposure*). In the exposure stage, nobody is graded on "correctness", they are graded on their willingness, their participation, their courage, and the clarity of their mathematical communication on the page. During class, we begin with an active, conversational lecture elaborating on and diving deeper into the material. Students then typically break into groups and solve problems together, as I walk the room and provide feedback (*experience*). This facilitates an environment of collaboration and discussion in class as opposed to competition and insecurity. I am mindful to rotate group assignments so that students are gradually interacting with the whole class over time, communicating with students of various backgrounds and exposures to math. Afterwards, we work together as a class to reflect on the work and highlight key takeaways and generalizations (*abstraction*).

This approach is highly effective because a lot of math education essentially presents results in vacuum; students are expected to apply formulas from memory, rather than get their hands dirty first and discover the underlying principles through their own investigation. This leads in turn to the abstraction, to the formula, but now the formula is a statement which the students can interpret. We work to come up with these together in class. We talk through the definition, the formula, where it came from, why it is true. In effect, the students discover the abstraction, while I facilitate.

Just as mathematical formulas are challenging to decipher, written math feedback can be difficult to interpret and many students elect not to look closely at it. Therefore, I ask my students to meet with me individually for 5 minutes after each exam to discuss broader trends that I have observed in their submitted work and brainstorm avenues that can be taken to improve if necessary. Communication with my students is paramount, my door is always open

for both discussions of class content and of successful strategies and approaches to study in the broadest sense. There are students that come into a course less prepared, more afraid, etc. and it is a priority for me to engage these students early and promote an environment of safety and comfort. Frequently, before tests I will host an optional recorded Zoom session containing review and directing students toward resources of primary importance.

My examples and problems are informed by student majors and student feedback on the difficulty of any particular topic. We may spend an extra day on a topic, if that is what the students need. But also, I always aim just slightly outside of the mathematical comfort zone, at the boundaries of the comfort zone, to stretch the student's self-perceived limits and get them comfortable with that uneasy space.

I worked at Microsoft in a research capacity in a computer graphics and machine learning sector. I bring this skillset to the classroom through an emphasis in interdisciplinarity and through teaching aids, such as 3D diagrams that can be difficult to draw on a white board and can be clearly developed and animated to highlight features. These skills were also invaluable during the development of "Spacing Out: Art and Topology Pop-up Museum" and in the Computer Graphics Workshop I led, which focused on mathematical visualization.

All of my professional interactions somehow involve the challenge of conveying highly technical content to non-experts. The recognition that most people are more capable than they might assume and that understanding and problem solving is a delightful experience to share motivates me. I have had to explain to company representatives at Microsoft, to parents of students, to artists and designers, to colleagues, always working to meet people, to find a common language with which we can gauge whatever is up for discussion.

Description of Courses Taught

UGA (As Instructor of Record), (19-21 students per class)

Spring 2025: MATH 2250 Calculus

Fall 2024: MATH 1113 Precalculus (2 sections)

Spring 2024: MATH 2250 Calculus

Fall 2023: MATH 1113 Precalculus (2 sections)

Summer 2023: MATH 2250E Calculus (online asynchronous)

Spring 2021: MATH 2250 Calculus

Fall 2020: MATH 2250E Calculus (online asynchronous)

Spring 2020: MATH 1113 Precalculus (2 sections)

Fall 2019: MATH 1113 Precalculus

Responsibilities: Design, development, and delivery of curriculum for calculus and precalculus classes, including both online synchronous and asynchronous version; grading HW/ exams, and providing feedback; holding regular office hours

UGA (As Graduate Teaching Assistant)

Spring 2025: MATH 4790/6790 Mathematics of Options Pricing

Responsibilities: grading homework and exams, as well as providing online feedback

Spring 2024: MATH 5200 Foundations of Geometry I

Responsibilities: helped design the curriculum; delivered 5 lectures on complex numbers and geometry; met weekly with students to review progress on their semester-long projects

Spring 2021: MATH 4500 Numerical Analysis I

Responsibilities: grading homework and exams

Fall 2020: MATH 4900 Topics in Math (variational calculus)

Responsibilities: grading homework and exams

Spring 2019: MATH 5020 Arithmetic for MG Teachers

Responsibilities: grading homework and exams

UGA (NSF Funded Assistantship)

Spring 2023: "Spacing Out: Art and Topology Pop-up Museum"

Summer 2024: "Spacing Out: Art and Topology Pop-up Museum"

Description and responsibilities: Over the course of two semesters, I led the development, organization, and opening of "Spacing Out: Art and Topology Pop-Up Museum," an NSF funded exhibition on topological spaces featuring fabric arts, ceramics, laser-cut wooden sculpture, 3D animation, and more developed by UGA students from a range of majors. The exhibition was displayed in the UGA Science Library for the month of November 2024, with a limited wall display remaining until February 2025.

My responsibilities for this project included recruitment of UGA math and design undergraduate students, expository overviews of topology and design principles of scientific communication, oversight over the development of artist contributions and works, event promotion, installation, and exhibition tours. I also gave workshops on the use of computer graphics for mathematical visualization, and helped organize additional programming in the form of general audience workshops on topology and crafting Seifert surfaces from paper.

Other Teaching Experience

Florida International University 2016-2018 (as Graduate Teaching Assistant)

Abstract Algebra, Multivariable Calculus, Functional Analysis, Differential Geometry

Responsibilities: Grading of homework and exams; holding regular problem solving sessions; holding office hours

Highschool Mathematics Teacher, Palm Beach County School District, 2015-2016

Algebra II Honors, Geometry Honors, AP Statistics

Responsibilities: Designed course curriculum; delivered daily lectures and oversaw active group work; participated in school-wide mathematics programming; communicated with parents/guardians and administration; Received the maximal evaluation of “Highly Effective”; Student test scores represented ~12% improvement over the previous year

Florida International University (Undergraduate)

“An Introduction to Turing Machines” (2013)

Description: I delivered a series of 3 lectures to freshman students in the FIU Honors College on the mathematical nature of Turing machines, how they relate to computing in general, and some philosophical implications arising from their study. The class represented a diverse set of majors, many of them outside of STEM, and these lectures were designed to be accessible to all while retaining the rich depth of the subject.

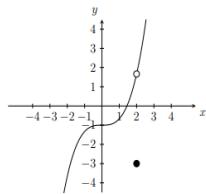
“Godel’s Incompleteness Theorems and Proof” (2012)

Description: I delivered a series of 3 lectures to freshman students in the FIU Honors College on Kurt Godel’s famous incompleteness theorems.. The class was centered on interpretations of “proof” in various academic fields, and speakers from different areas (math, science, law, etc.) were invited to elaborate on how results are justified in their respective fields.

Sample Teaching Materials

1. In your groups, read back over the definitions of continuity from the right and from the left. Sketch the graph of a function that is continuous from the right at $x = 2$ but is not continuous from the left at $x = 2$. Use limits to verify that your function has the desired properties.

2. Sketch the graph of a function satisfying the following:

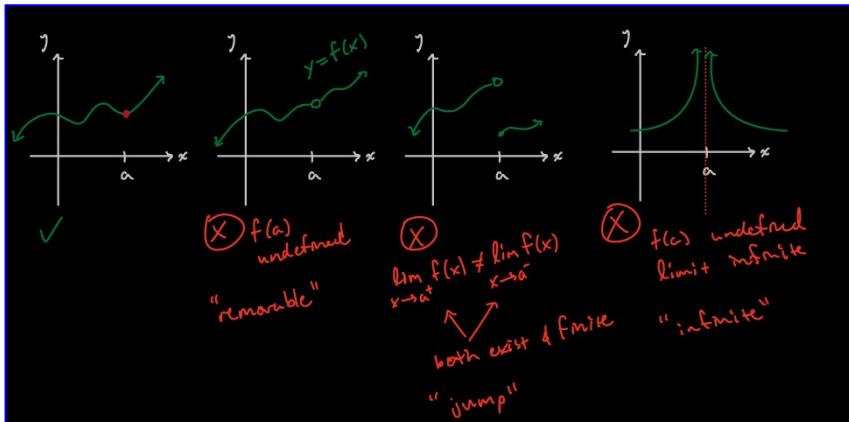

- Its domain is $[-1, 2]$.
- It is continuous on the interval $(-1, 2]$.
- It is NOT continuous on the interval $[-1, 2]$.

Example group work problems: These problems ask students to construct some simple examples of functions with given behavior (above), before progressing to more mature mathematical problems (below).

6. Use the Intermediate Value Theorem to explain why the equation $2 \sin(x) + x - 1 = 0$ has a solution in the interval $[0, \pi]$. You may use decimal approximations in your explanation; round any decimal approximations to the nearest hundredth.

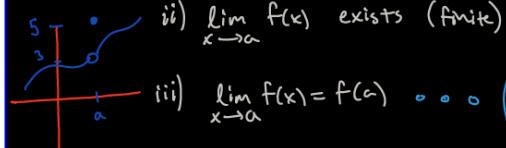
Practice On Your Own

1. The graph below is the graph of $y = f(x)$. Determine whether f is continuous at $x = 2$; use the definition of continuity to justify your answer.


1. $f(2) = -3$
 2. $\lim_{x \rightarrow 2} f(x) = 2$

3. $-3 \neq 2 \rightarrow f$ is not continuous at $x = 2$
 because the value of $f(2)$ doesn't
 equal the $\lim_{x \rightarrow 2} f(x)$. Jump discontinuity

2. Determine whether the function $f(x) = \frac{x+1}{\sqrt{x}}$ is continuous at $x = 1$. Justify your answer using the definition of continuity.

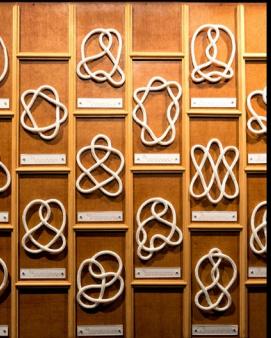

Example of pre-class assignment with student work

Example notes used in planning: First we investigate continuity in a hands-on fashion (above), then we formulate the technical definition from our observations (below). In my lecture notes, I use different colors to separate comments and crucial information and frequently use thought bubbles to highlight connections to previous material.

Defn: A function f is continuous at $x = a$ if

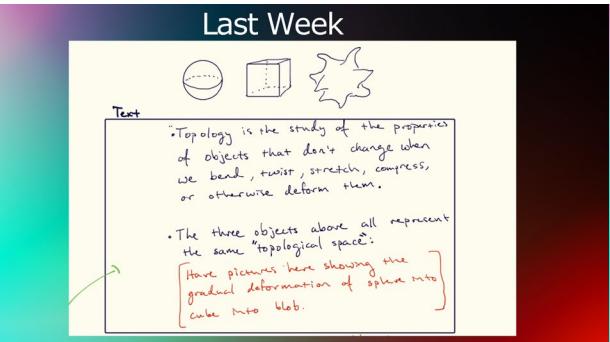
i) $f(a)$ is defined

$f(a) = 5$
 $\lim_{x \rightarrow a} f(x) = 3$


f is discontinuous at $x = a$
 if it is not continuous at $x = a$.

Sample Slides (First Semester of “Spacing Out: Art and Topology Pop-up Museum”, Spring 2023)

Pop Up Topology Exhibition


Week 3 march 27, 2023

Exhibition Development
Prototyping

- Math/Art pairings
 - Weekly design ideation
 - Object mockups
 - Supporting text
- Collective brainstorming and feedback sessions
 - During weekly meetings and through GroupMe
 - Discuss materials/budget

Mathematical knot table, available on the collection of Matemática IHE-USP. Matemática IHE-USP/Rodrigo Tetsuo Argandoña.

Last Week

Text

Topology is the study of the properties of objects that don't change when we bend, twist, stretch, compress, or otherwise deform them.

The three objects above all represent the same "topological space".

[Have pictures here showing the gradual deformation of sphere into cube into blob.]

A photograph of a hand holding a small, intricate knot sculpture made of green and grey materials. To the right is a larger photograph of a tall, complex knot sculpture with multiple loops and a textured surface.

Sample Student Work

Sample student work from the classroom

2. (a) [5 pts] Determine the two radian angles α in $[0, 2\pi]$ where $\cot(\alpha)$ is undefined.

$$\cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)} \rightarrow \cot(\alpha) \text{ is undefined when } \sin(\alpha) \text{ is zero}$$

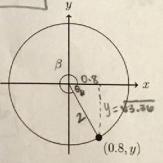
$\sin(\alpha) = 0$ when $\alpha = 0, \pi, 2\pi$ but 2π is not in the domain so it is

$\alpha = 0 \text{ and } \pi$

(b) [5 pts] The circle in the diagram below has a radius of 2 units. Determine the values of the cosine, sine, and tangent of the angle β . (Provide an exact answer.)

Pythagorean theorem: $2^2 = 0.8^2 + y^2$

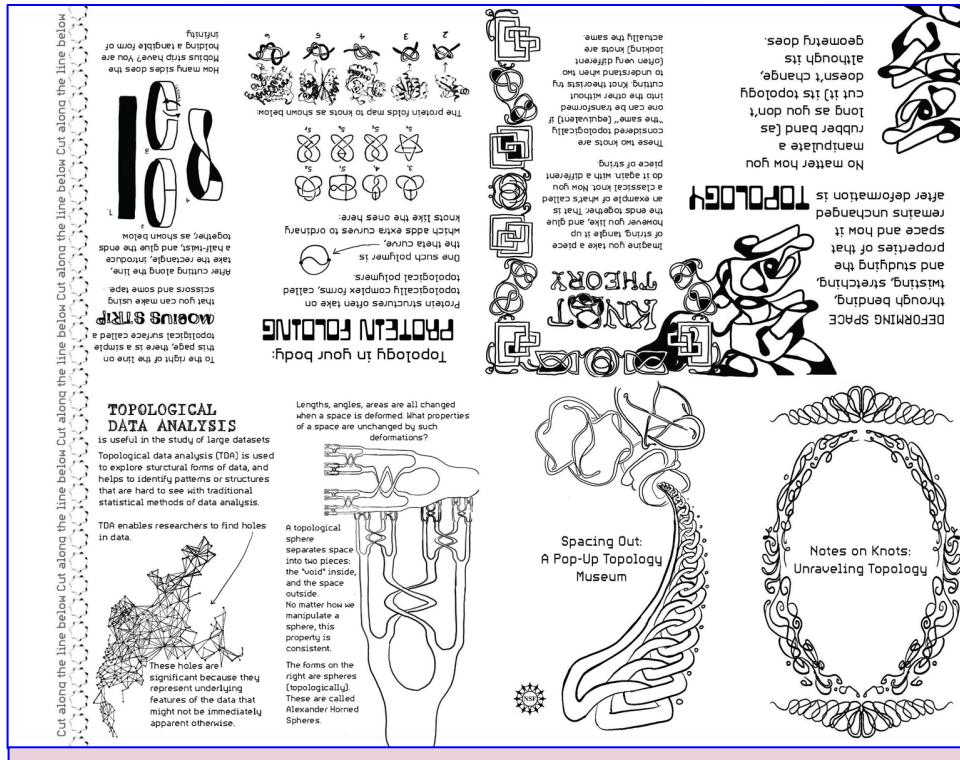
$$4 = 0.64 + y^2$$


$$0.64 = 0/0.64$$

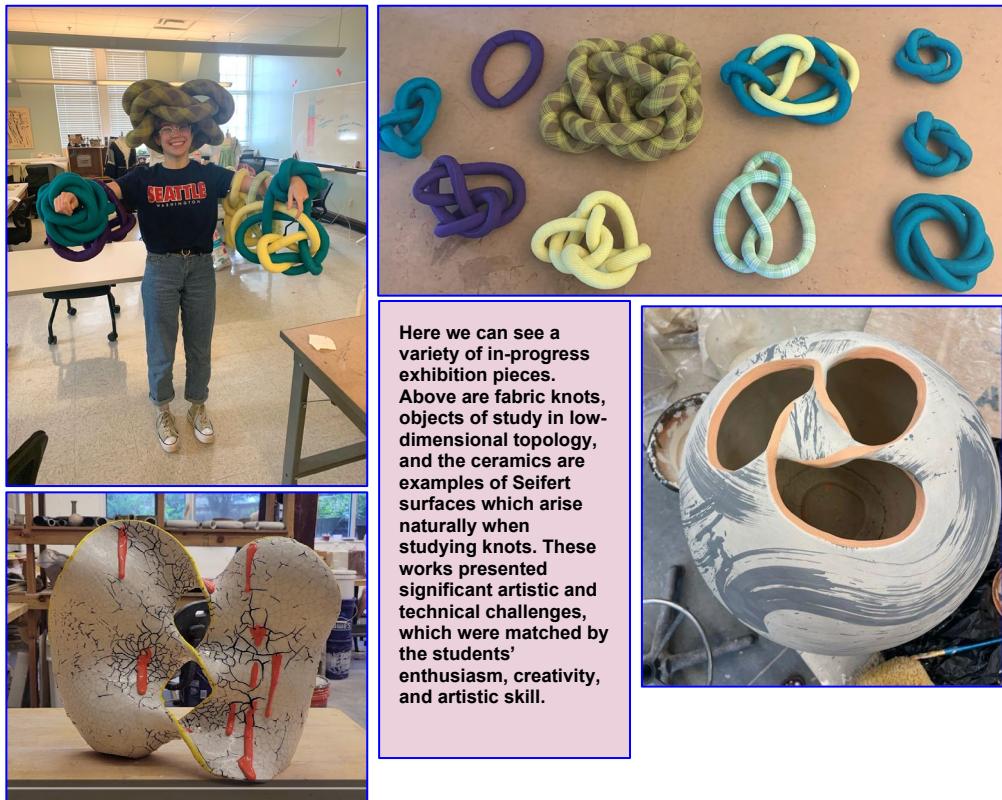
$$\sqrt{3.36} = \sqrt{y^2}$$

$$\sqrt{3.36} = y$$

$\sin(\beta) = \frac{\text{opp.}}{\text{hyp.}} = \frac{-\sqrt{3.36}}{2}$


$$\cos(\beta) = \frac{\text{adj.}}{\text{hyp.}} = \frac{0.8}{2} = 0.4$$

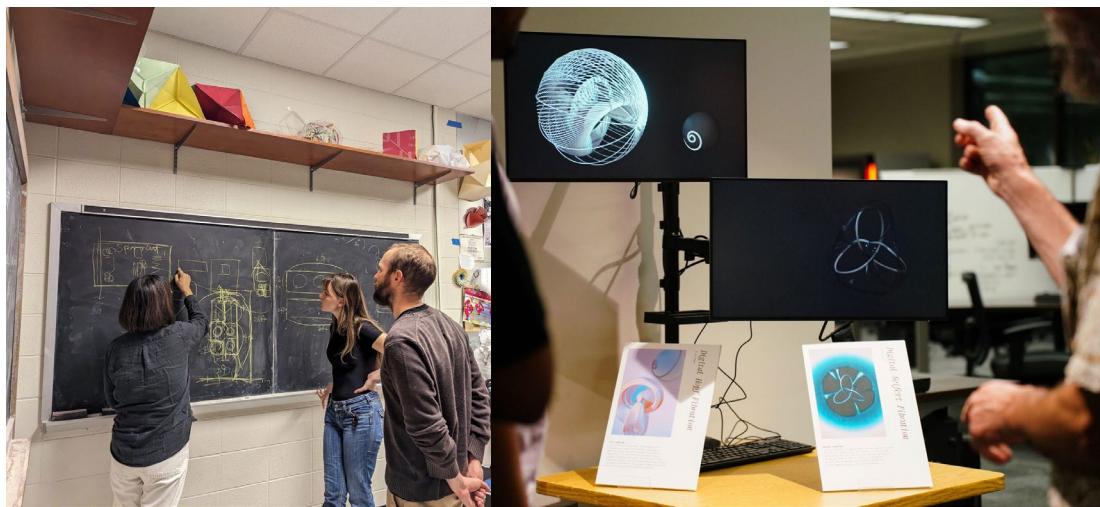
$$\tan(\beta) = \frac{\text{opp.}}{\text{adj.}} = \frac{-\sqrt{3.36}}{0.8}$$


Example of student work: Note the clarity of exposition, the explanations given in English, the citation of relevant theorems, and the labeling on the diagram.

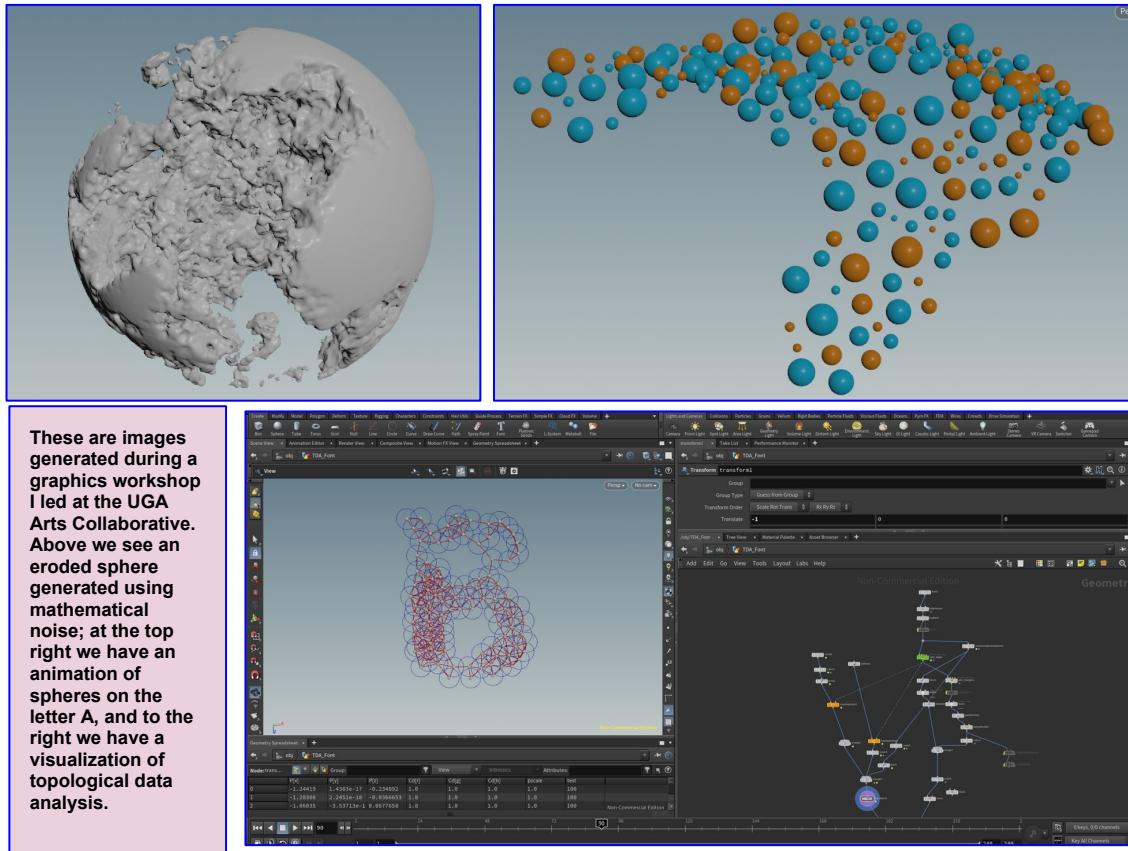
Students in my classroom are evaluated on the effectiveness of their *mathematical communication*. Students must justify their solutions as though they were convincing the reader of their solution's legitimacy. This means organizing their argument sensibly on the page, citing any major theorems they apply, and including any additional comments that help clarify their work.

Sample student work from “Spacing Out: Art and Topology Pop-up Museum” (Spring 2023 - Fall 2024)

An unfolded zine developed in collaboration with a student.


Explanation of innovative teaching projects and roles

“Spacing Out: Art and Topology Pop-up Museum” (Spring 2023 - Fall 2024)


From Spring 2023 through Fall 2024, I led the development of an NSF-funded mathematics exhibition titled “Spacing Out: Art and Topology Pop-up Museum,” which was displayed in the lobby of the Shirley McBay Science Library for the month of November 2024 during the campus-wide Spotlight on the Arts Festival.

The objects featured in the exhibition were developed by UGA undergraduate students from a wide variety of majors. Documentation of this project was included in a proposal for a separate NSF grant of \$2.5 million, which was successfully funded and includes a 5-year initiative for further interdisciplinary visualization collaborations between the UGA Mathematics Department and the Lamar Dodd School of Art.

The intended outcomes for this project were, on the one hand, to design, produce, and display a mobile science museum that could be displayed at various locations

Outcomes from a Computer Graphics Workshop (Spring 2023), UGA Arts Collaborative

Professional Activities Related to Teaching at UGA

Guest Lecture Series “Complex Numbers and Geometry”: Foundations of Geometry I (2024)

Description:

Seifert Surface Workshop (Fall 2024), UGA McBay Science Library

Description: Led programming on a general audience workshop in which students learn about knot theory and Seifert surfaces, and learn methods for creating these surfaces out of paper

Spacing Out: Art and Topology Pop-up Museum Tours (Fall 2024), UGA McBay Science Library

Description: Led informational tours through the exhibition, describing the mathematical content on display and highlighting artist contributions

Computer Graphics Workshop (Spring 2023), UGA Arts Collaborative

Description: Led a weekend workshop on elementary computer graphics techniques and their applications to mathematical and scientific visualization to undergraduate students from a variety of majors outside of math

Topology Museum Workshop (Spring 2023), UGA Arts Collaborative

Description: Led the recruitment workshop at the early stages of “Spacing Out: Art and Topology Pop-up Museum”. We led participants through examples of topological concepts, a number of design objects previously developed in collaboration between the UGA Math Department and the Lamar Dodd School of Art Graphic Design Program, a discussion on scientific communication, and an activity in which students made Möbius bands and cut them in various ways to reveal interesting topological properties

Consult for UGA Math Education Doctoral Research (Fall 2023)

Description: Assisted in the experimental design stage of a doctoral research project in the Math Education Department which investigated the impact of graduate student instruction on outcomes in Precalculus classes

Guest Lecture: MATH 5020 Arithmetic for Middle School Teachers (Fall 2019)

Teaching Related Professional Development and Training

GRSC 7770: Graduate Seminar (Fall 2018)

Description: This is a preparatory course on principles of teaching Precalculus, including study of various pedagogical frameworks, mock teaching exercises, and overview of relevant UGA policy.

MATH 9005: Doctoral Graduate Student Seminar (Fall 2019)

Description: This course is taken alongside the first semester of teaching Precalculus as instructor of record; we surveyed recent studies in math education and various approaches to classroom structure (including traditional, flipped, active learning, and others), discussed challenges faced in the classroom, and shared teaching reflections

MATH 9005: Doctoral Graduate Student Seminar (Spring 2020)

Description: a continuation of the Fall 2019 course taken alongside the first semester of teaching two sections of Precalculus as instructor of record

Palm Beach County School District: Mathematics Education Workshop (2015)

Palm Beach County School District: Temporary Certification (2015)

Evaluations and Feedback

Quantitative feedback: (1 = strongly disagree; 2 = disagree; 3 = neither agree nor disagree; 4 = agree; 5 = strongly agree.)

Prompt	1113 Fall '24	1113 Fall '24	2250 Spr '24	1113 Fall '23
The instructor was well prepared for class.	4.75	4.67	4.67	4.75
The instructor used class time effectively.	4.875	4.83	5.0	4.75
The instructor was responsive to questions in class.	4.875	5.0	5.0	4.75
The instructor was available for individual consultation.	4.88	5.0	5.0	4.75
The instructor provided prompt and helpful feedback.	4.75	5.0	5.0	4.0
The instructor has been effective in increasing interest in the material.	4.5	5.0	5.0	4.75
The instructor facilitated a respectful and inclusive environment.	4.88	5.0	5.0	4.75
I rate my professor in this course as:	4.63	4.83	4.83	4.25

1113 Fall '23	2250E Sum '23	2250 Spr '21	2250E Fall '20	1113 Spr '20	1113 Spr '20	1113 Spr '19
4.67	4.29	4.4	4.23	4.33	4.67	4.88
5.0	4.57	4.2	4.86	4.0	4.5	4.63
5.0	4.86	4.8	4.86	4.67	4.83	5.0
5.0	4.71	4.0	4.57	4.67	4.83	5.0
4.67	4.43	4.2	4.29	4.67	4.67	4.71
4.33	4.0	3.8	4.43	3.67	4.33	4.75
4.67	4.57	4.6	4.86	4.67	4.83	4.88
4.33	4.14	4.2	4.29	4.0	4.33	4.75

Selected written feedback from MATH 1113 and MATH 2250 courses

“Mr. Tepper has been my favorite teacher since I came to UGA. He does a great job explaining and taking questions during class and makes time to meet with his students during office hours and on zoom. Professor Tepper has made a very difficult class more enjoyable.”

“When I had questions while doing my homework assignment, he always responded as soon as possible. Overall, I think Mr. Tepper was a great math teacher.”

“Mr. Tepper is by far the best math teacher I have ever had. His lesson plans are well organized. He helps the students learn and wants them to do well. Gives excellent feedback on exams. [He] helped me want to learn the material and not just get a good grade.”

“He cares about students understanding the calculus on a deeper level than just memorizing computation methods, which has definitely helped me retain what I've learned.”

“... He did not meet students with judgement or sarcasm -- instead, he took the time to carefully review material to help the student understand.”

“One of the best teachers I have had, and it was not even in person. All online classes should be taught like this! He's great!”

“He was overall an amazing professor. He lectured the first half, and had us do worksheets the second half, answering questions and explaining things clearly the whole time. I wish he was teaching calculus next semester so I could take his class then!”

Selected written feedback from “Spacing Out: Art and Topology Pop-up Museum” participants

“Alex exemplifies the rare combination of deep expertise and genuine dedication to student learning. When a student expressed interest in computer graphics software, he didn't just answer their questions—he organized and led an entire weekend workshop to explore the topic in depth. He has a remarkable gift for making the seemingly impossible feel achievable. When I began working with him, I had no background in topology, yet through his patient guidance and clear explanations, we progressed from basic concepts to collaborating on a mathematical zine for public exhibition. I am grateful to have gotten to work with and learn from him.”

“Throughout my participation in the *Spacing Out: Art and Topology Pop-Up Museum*, Alex was exceedingly kind and helpful, always happy to lend a hand with challenging project elements, brainstorm our way through difficulties, and help us better understand the mathematical and scientific elements of what we were doing. Though I had no prior experience in topology whatsoever, Alex helped me understand several basic concepts through his clear explanations at the beginning of the semester and constant communication with us throughout the project to make sure we understood every step of the way. I've never participated in such a unique project with such an interdisciplinary team, but Alex is certainly more than capable of bringing such diverse groups together and focusing their efforts on creating awesome products!”

Selected feedback from colleagues

“Alex's teaching is truly exceptional. When I observed his Calculus I class, I was struck by his professionalism and the thoughtful manner in which he helped students fix common misconceptions. Patient, encouraging, and kind, Alex's teaching that semester genuinely stood out as exemplary among his peers. I am delighted to have him teach Calculus I again this semester and look forward to the valuable contributions that he will undoubtedly bring to our undergraduates.” -Dr. Enka Lakuriqi, Senior Lecturer and Calculus I Coordinator, UGA